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I. INTRODUCTION 

Since the end of World War II and up until recent years the United States Army has 
conducted limited live-fire tests of armored fighting vehicles (AFVs) to investigate the 
interaction occurring between munitions and these vehicles. The live-fire tests were con- 
ducted only occasionally because of extremely high costs cf resources necessary for those 
tests. Although vulnerability studies of AFVs have used the insights gathered from such vehi- 
cle tests, they have relied more on mathematical modeling, computer simulation, live-fire 
tests of components, and inferences made from firing at armor plate. The live-fire testing of 
armored vehicles has recently intensified involving a very limited number of vehicles and 
shots. One question which Army researchers wish to answer is how well do computer model 
predictions compare with the results from live-fire field testing of AFVs. The answer to that 
question is the topic of this report. 

The outcome of a direct hit on a target vehicle may be examined on three different lev- 
els. We may look at 

1. the entire system (e.g., catastrophic kill), 

2. subsystems (e.g., personnel, fire control), and 

3. components (e.g., projectile tubes, propellant cases). 

If the test results are described as either "kill" or "no-kill", we have a Bernoulli trial in which 
the outcome can be one of only two possible states. Vulnerability estimates are expressed as 
kill probabilities (Pk)'s, which represent the proportion of hits resulting in a kill. 

Recently a computer model has been developed that incorporates randomness in its cal- 
culations so that simulated repeated firings at an AFV under identical shot conditions pro- 
duce varying degrees of destruction. Through many runs of the model, vulnerability research- 
ers can obtain hypothesized values (or estimates) of the true Pk's for the entire system, sub- 
systems and components. It would be an experimental luxury to be able to fire munitions at 
hundreds of AFVs under the same shot conditions to see how well these hypothesized values 
from the model replicate the live-fire results. Due to the destructive nature of the test and 
the cost of AFVs, such an experiment is economically infeasible. Usually the same munition 
or different munition types are fired at vehicles under varying shot conditions with no duplica- 
tion of shots and the experimenter is left to assess the validity of computer based vulnerability 
estimates from the firing of a single round. It is impossible to statistically analyze a 
hypothesized Pk on the basis of one fired round. However, if we look at a group of com- 
ponents, for example, then we can make a statistically valid statement for the corresponding 
group of Pk's if we assume that the components are independent. What is meant by indepen- 
dence is that the outcome of any component (kill or no-kill) has no influence on the probabil- 
ity that the other components in the group will be killed. 



This report details four procedures for testing a group of hypothesized probabilities. 
The argument is presented that one of the four is the asymptotically most powerful test of the 
possible procedures. This problem was first studied by Dr. J. Richard Moore, formerly of the 
US Army Ballistic Research Laboratory (BRL), in response to requests from the 
Vulnerability/Lethality Division (VLD) of BRL. The author joined Dr. Moore in his 
research in 1986. Since then VLD has used some of the results in exarnining computed esti- 
mates, which were calculated with a expected value model, for consistency with observed test 
results from firings at AFVs. 

H. TEST CONCEPTS 

Assume that as a result of our computer simulation, we obtain a set of Pk estimates. 
Perhaps they are for a group of components within a subsystem of the AFV. Denote this set 
of estimates by the vector [p°, p£, • • •, p/°], where p° is the estimated kill probability of the il 

component of interest and / is the number of components. Also, let the true but unknown kill 
probabilities be denoted by the vector [pi( p2,—, pj. If we assume that the components are 
independent, then we may begin to develop our test strategy by writing the null hypothesis: 

Ho: Pi = Pi°' P2 = P2'•' P/ = P/°- 

Note that while this is similar to the hypothesis for the binomial test, one fundamental 
difference exists: We allow for the p°'s to be unequal. We call this a test of generalized bino- 
mial proportions. The binomial test is a special case of this, namely p. = p., for all i,j. 

If the data do not support the null hypothesis, then it is rejected in favor of its converse, 
the alternative hypothesis, 

HA: pj jfcpj0 for some i. 

The alternative hypothesis states that only one inequality has to exist; i.e., only one estimate 
needs to be incorrect. However, because the analysis is based upon as little as one round, 
gross inequalities are needed before a procedure will be able to reject the null hypothesis with 
satisfactory power. 

Suppose we observe a set of/ independent Bernoulli outcomes from the live fire testing 
(denoted by 0 or 1, corresponding to no-kill or kill, respectively), and write them in the form 
of a row vector A = [a^ a^,..., a,]. For example, if /=5, we may observe A = [0,1,0,0,1]. 
There are Z possible outcome vectors Alf Aj,..., A^, which we collectively define to be R., 
Any test of the null hypothesis requires a measure of performance (MOP) for each of the 2* 
outcomes and some ordering of the measure. At this point we branch our discussion into 
four different MOP's and thus four different testing procedures. 



m. PROCEDURE 1 - THE ORDER BY PROBABILITY (OP) PROCEDURE 

This procedure rejects the null hypothesis if the observed vector is among a defined crit- 
ical set of "rarest" outcomes. The MOP for the procedure is simply P(A), the probability with 
which outcome A occurs assuming our hypothesized probabilities p°, p£, •», P/. The outcome 
set, fi, is ordered by P(A) in increasing magnitude, and each outcome is numbered so that 
A(1) is the least likely outcome and Af2i> is most likely. We then define a cumulative function 
B, where 

B;   = 
Bi-i + P(A(i)) i=2,3,4, ...,2' 

We pick a desired level of significance, a, and find "c" such that c = max {]ß- < a and 
P(A^) -£P(Aß+1))}. Then the set RR = {A(1), A,-,..., A^} represents the c rarest out- 
comes in H and is the rejection region for the test of HQ at a l00a% level of significance. The 
"test statistic" is the observed outcome vector A; if A € RRop, then H0 is rejected. 

IV. PROCEDURE 2-THE KILLS TEST 

This test uses for its MOP, the number of kills (l's) observed. The underlying notion is 
that under the null hypothesis, a certain number of kills is expected. Letting K(A) denote the 
number of kills in our observed outcome vector A, then the expected value of K( A) is 

E[K(A)]=Pl
0 + p2

0 + ... + P; 

= E Pi°- 
i=i 

If the observed K(A) is much smaller than E[K(A)], then perhaps the model estimates 
are inflated estimates of the true kill probabilities. Likewise, if the observed K(A) is much 
larger than E[K(A)], then the estimated kill probabilities are probably too small. 

To perform this test, we begin by calculating K(A) and P(A) for ail 2 outcomes. The 
outcomes are then ordered in increasing magnitude by K(A) and numbered, so that 

K(A(1))<K(A(2))<---<K(A(2<)). 



The order among outcomes with equal K(A) is irrelevant. Similar to the OP procedure the 
"cumulative function" is calculated. Since rejecting H0 may be due to either too small or too 
large a value of K(A), a two-tailed test is used. Critical values ct and c2 are selected so that 
the actual alpha level 

PpCCA^cJ + PtKCA)^] 

is maximized but still less than or equal to a. The rejection region for this test is 
RRK = {A|K(A) G {0,1, • • • cj u {c2,C2+l, • • • /}}. The model estimates will be rejected 
as inconsistent with the field tests if A G RRK. 

V. PROCEDURE 3 - THE MORE-LIKELY RESPONSE (MLR) TEST 

This test examines the number of more-likely, or "correct" responses where a more- 
likely response is defined as 

1i 

1 if aj = 0 when p? < .5, or if a} = 1 when p? > .5 

5 if p° = .5 

^0 otherwise 

In other words a more-likelv response is the response which we expect to see more often than 
not in the long run. So if p{ = .8 we would expect to observe a kill more often than a no-kill. 
If aj = 1, a kill, then 7. = 1 and the observed response is considered "correct". When p.° = .5, 
we are essentially saying that we have no inclination as to which response is more likely. 
Therefore we compromise and always assign ^ = .5. 

The MOP is the total number of correct responses 

M(A) = 7i + 72 +   • * • +7/ 

i=l 

The reasoning behind this procedure is that if we observe an unusually low number of 
more-likely responses, then our model estimates are too large when they should be smaller 
and/or too small when they should be larger. We also note that it is possible to observe too 
many correct responses. This would tend to indicate that our large estimates (p° > .5) are 
not large enough and/or that our small estimates (p? < .5) are not small enough. 

The expected value of M( A) is 

E[M(A)] = ML + S*/2 + My 



where 

M
L = E(

1
-P/

>
) foraUp°<.5 

j 

Mu=EPj°       foraUP;>.5 
j 

* O 
S  = number of Pj equal to .5 

We start by calculating M(A) and P(A) for all possible outcomes. The outcomes are 
arranged in increasing magnitude by M(A) without regard for ties so that 

MCA^MC^O-SMCA^) 

The cumulative function is computed as usual. Since obtaining a value of M(A) much 
smaller or larger than the expected value leads us to believe that HQ is false, a two-tailed test 
is desired. Critical values c1 and <^ are selected as in the Kills test to maximize the actual 
alpha level. The rejection region becomes RRMLR 

= {A|M(A) e {0,1, • • • cj 
U {c2, c2 + 1, • • • /} }, and we will reject H0 at the a level of significance if Ae RR^LR- In 
practice, though, c2 will usually not exist and a one-tailed test will be used instead. 

VI. PROCEDURE 4 - THE SQUARED DISTANCE MEASURE (SDM) TEST 

This test involves the calculation of a "squared distance measure" for each component of 
the outcome vector. The SDM is (p{° - af) . Squaring assures that all values are positive so 
that each component produces an additive effect; it also increases the "penalty" for responses 
which are very far from p?. Note that the SDM for any given component must lie in the 
interval [0,1]; and the two values SDM may take on are more extreme the nearer to 0 or 1 p° 
is. The SDM acts as a penalty functioa As p° approaches 0 (or 1), the penalty associated 
with being incorrect is greater. If p° is close to .5 (i.e., we have less confidence in our ability 
to predict aj), then the penalty for an incorrect response is not much different than the SDM 
for a correct response. The MOP is simply the sum of the SDM's, 

S(A) = (p1°-a1)
2 + (p2

0-a2)
2
+ ••• + (p,°-a,)2 

= £(Pi°-ai)2 

i=l 

The expected value of S( A) is 

E[S(A)] = J) Pi° (1 - Pi°) 
i=l 



Again, we calculate S(A) and P(A) for each of the Z outcomes, and arrange them in decreas- 
ing magnitude by S(A) with no regard for ties so that 

S(A(1))>S(A(2))>--->S(A(2()) 

The Bj's are computed in the usual fashion. We would tend to believe that H0 is false if 
S(A) is too large, therefore a one-tailed procedure is used. Given alpha, we select c which 
satisfies 

c = maxtilB^aandSCA^) ^(A^)}. 

The set of outcomes RRS = {A|S(A) > S(A,c))} represents the rejection region for our test of 
H0. Therefore if S(A) > S(A,c)) we reject H0 at the a level of significance. 

Vn. AN ILLUSTRATIVE EXAMPLE 

Assume that the model estimates of kill probabilities for five independent tank com- 
ponents are as follows: 

A = [.23, .64, .19, .91, .70] 

Figure 1 shows each of the 2 = 32 possible vector outcomes along with their associated 
P(Aj), K(Aj), M(Aj), and S(Aj). The outcomes are ordered by a binary counting scheme. 
The OP procedure is illustrated in Figure 2. Note that the vectors are now ordered by their 
probability of occurrence. The rejection region for an a = .05 level of significance is all the 
outcomes above the line. Figure 3 shows the Kills test ordering scheme and resultant two- 
tailed rejection region outside the two lines. Note the additional columns PfK^A^)] and 
B[K(Afiv)]. Since our test statistic is K(A), vectors having an equal number of kills are indis- 
tinguishable. Therefore P[K(A,jO] represents the probability of getting K(A^) kills and 
B[K(A,Ö)] represents the cumulative probability for the same number of kills. In Figure 4, 
the MLR test is shown. Although a two-tailed procedure can be used, the rejection region 
only includes a lower tail of six vectors. This is because the vector with M(A,32)) = 5 has a 
probability mass greater than alpha. The columns P[M(A~)] and B[M(A,jO] are analogous to 
the additional columns of Figure 3. We see the SDM test in Figure 5. It has a rejection 
region of 13 vectors containing the largest values of S(A,.x). Note that B14 < a, however A,14) 

is not in the rejection region. This is because S(A.14)) = S(A,15J and B15 > a. Recall that in 
each of the tests, outcomes with equal MOP's are considered indistinguishable. If we had 
allowed A,14) € RRS and A,15) £ RRS then we would be violating the rule by differentiating 
between two outcomes with the same SDM. Figure 6 summarizes the rejection regions of the 
four procedures, with OP having the largest region and the kills test having the smallest. 



The hypothesized probabilities are: 
[0.23,0.64, 0.19,0.91,0.70] 

Vector Prob. Kills MLR SDM 

\ P(Ai) K(Aj) M(Ai) S(Aj) 

00000 0.00606 0 2 1.8167 
00001 0.01415 1 3 1.4167 
00010 0.06130 1 3 0.9967 
00011 0.14303 2 4 0.5967 
00100 0.00142 1 1 2.4367 
00101 0.00332 2 2 2.0367 
00110 0.01438 2 2 1.6167 
00111 0.03355 3 3 1.2167 
01000 0.01078 1 3 1.5367 
01001 0.02515 \-':i'- 4 1.1367, 
01010 0.10897 2 4 0.7167 
01011 0.25427 3 5 0.3167 
01100 0.00253 2 2 2.1567 
01101 0.00590 3 3 1.7567 
01110 0.02556 3 3 1.3367 
01111 0.05964 4 4 0.9367 
10000 0.00181 1 1 2.3567 
10001 0.00423/ 2 2 1.9567 
10010 0.01831 2 2 1.5367 
10011 0.04272 3 3 1.1367 
10100 0.00042 2 0 2.9767 
10101 ,0.00099 3 1 2.5767 
10110 0.00429 3 1 2.1567 
10111 0.01002 4 2 1.7567 
11000 0.00322 2 2 2.0767 
11001 0.00751 3 3 1.6767 
11010 0.03255 3 3 1.2567 
11011 0.07595 4 4 0.8567 
11100 0.00076 3 1 2.6967 
11101 0.00176 4 2 2.2967 
11110 0.00764 4 2 1.8767 
11111 0,01782 5 3 1.4767 

Figure 1. Hypothetical 5-component example: All possible outcomes and measures of 
performance. 



The hypothesized probabilities are: 
[0.23,0.64,0.19,0.91,0.70] 

Vector Prob. Cum.Prob. 
i 

% P(V Bi 

1 10100 0.00042 0.00042 
2 11100 0.00076 0.00118 
3 10101 0.00099 0.00217 
4 00100 0.00142 0.00359 
5 11101 0.00176 G.00536 
6 10000 0.00181 0.00717 
7 01100 0.00253 0.00969 
8 11000 0.00322 0.01291 
9 00101 0.00332 0.01623 

10 10001 0.00423 0.02046 
11 10110 0.00429 0.02475 
12 01101 0.00590 0.03065 
13 00000 0.00606 0.03671 
14 11001 0.00751 0.04422 
15 11110 0.00764 0.05186 
16 10111 0.01002 0.06188 
17 01000 0.01078 0.07266 
18 00001 0.01415 0.08680 
19 00110 0.01438 0.10118 
20 11111 0.01782 0.11900 
21 10010 0.01831 0.13731 
22 01001 0.02515 0.16246 
23 OHIO 0.02556 0.18802 
24 11010 0.03255 0.22057 
25 00111 0.03355 0.25412 
26 10011 0.04272 0.29684 
27 01111 0.05964 0.35648 
28 00010 0.06130 0.41778 
29 11011 0.07595 0.49373 
30 01010 0.10897 0.60270 
31 00011 0.14303 0.74573 
32 01011 0.25427 1.00000 

Figure 2. Hypothetical 5-component example: Summary of Order by Probability 
(OP) Procedure. 



The hypothesized probabilities are: 
[0.23,0.64, 0.19,0.91,0.70] 

Vector Kills Probability Cumulative Probability 
i 

% K(A(i)) n%) PtKCA^)] Bi BtKCA^)] 

1 00000 0 0.00606 0.00606 0.00606 0.00606 
2 00001 0.01415 j 0.02021) 
3 00010 0.06130/ 0.08151 
4 00100 0.00142) 0.08945 0.08293) 0.09552 
5 01000 0.010781 0.09371 
6 10000 0.00181/ 0.09552 ] 
7 00011 2 0.14303 \ 0.23855 i 
8 00101 2 0.00332 0.24186 
9 00110 2 0.01438 0.25624 

10 01001 2 0.02515 I 0.28139 
11 
12 

01010 
01100 

2 
2 

0.10897 1 
0.00253 j >   0.32355 

0.39036 1 
039289 )      0.41906 

13 10001 2 0.00423 0.39711 
14 10010 2 0.01831 | 0.41542 
15 10100 2 0.00O42 | 0.41585 
16 11000 2 0.00322 / 0.41906 
17 00111 3 0.03355 \ 0.45262 
18 01011 3 0.25427 0.70689 
19 01101 3 0.00590 0.71278 
20 OHIO 3 0.02556 0.73835 
21 10011 3 0.04272 \ >    0.40811 0.78107 \   0.82717 
22 10101 3 0.00099 0.78206 
23 10110 3 0.00429 0.78635 
24 11001 3 0.00751 0.79387 
25 11010 3 0.03255 

0.00076/ 
0.82642 

26 11100 3 0.82717, 
27 01111 4 0.05964) 0.88682 
28 10111 4 0.01002 0.89684 
29 11011 4 0.07595 0.15501 0.97279 0.98218 
30 11101 4 0.00176 \ 0.97455 
31 11110 4 0.00764/ 0.98218 
32 11111 5 0.01782 0.01782 1.00000 1.00000 

Figure 3. Hypothetical 5-component example: Summary of Kills test. 



The hypothesized probabilities. are: 
[0.23,0.64,0.19,0.91,0.70] 

Vector MLR Probability Cumulative Probability 
i *o M(A(i)) rev PIMCAQ)] Bi BIMCAgp] 

1 10100 0 0.00042 0.00042 0.00042 0.00042 
2 00100 1 0.00142 0.00185 
3 10000 1 0.00181 0.00366 
4 10101 1 0.00099 >      0.00927 0.00465 0.00970 
5 10110 •4 

i 0.00429 0.00894 
6 11100 1 0.00076 0.00970 
7 00000 2 0.006061 0.01576' 
8 00101 2 0.00332 0.01908 
9 00110 2 0.01438 0.03346 

10 01100 2 0.002531 0.03599, 
11 10001 2 0.004231 }     0.07146 0.04021' •    0.08116 
12 10010 2 0.01831 j 0.05852 
13 10111 2 0.010021 0.06854 
14 11000 2 0.00322 0.07176 
15 11101 2 0.00176 0.07352 
16 11110 2 0.00764 0.081161 
17 00001 3 0.014151 0.095301 
18 00010 3 0.06130 0.15660 
19 00111 3 0.03355 0.19015j 
20 01000 3 0.010781 0.20093 
21 
22 

01101 
OHIO 

3 
3 

0.00590' 
0.02556 j I      0.25183 

0.20683 J 
0.232391 

•   0.33299 

23 10011 3 0.04272 0.27511! 
24 11001 3 0.00751 0.28262' 
25 11010 3 0.03255 0.31517 
26 11111 3 0.01782 0.33299 J 
27 00011 4 0.14303 0.47602 

0.50117 28 01001 4 0.02515 
29 01010 4 0.10897 0.41274 0.61014 0.74573 
30 01111 4 0.05964 0.66978 
31 11011 4 0.07595, 0.74573] 
32 01011 5 0.25427 0.25427 1.00000 1.00000 

Figure 4. Hypothetical 5-component example: Summary of More-Likely Response (MLR) 
test. 

10 



The hypothesized probabilities are: 
[0.23,0.64,0.19,0.91, 0.70] 

i 
Vector 

% 

SDM Probability Cumulative 
Bi 

Probability 
BßCAß)] 

1 10100 2.9767 0.00042 0.00042 0.00042 0.00042 
2 11100 2.6967 0.00076 0.00076 0.00118 0.00118 
3 10101 2.5767 0.00099 0.00099 0.00217 0.00217 
4 00100 2.4367 0.00142 0.00142 0.00359 0.00359 
5 10000 2.3567 0.00181 0.00181 0.00540 0.00540 
6 11101 2.2967 0.00176 0.00176 0.00716 0.00717 
7 
8 

01100 
10110 

2.1567 
2.1567 

0.00253 
0.00429 

>     0.00682 0.00969) 
0.01399 j 

0.01399 

9 11000 2.0767 0.00322 0.00322 0.01721 0.01721 
10 00101 2.0367 0.00332 0.00332 0.02053 0.02053 
11 10001 1.9567 0.00423 0.00423 0.02475 0.02475 
12 11110 1.8767 0.00764 0.00764 0.03239 0.03239 
13 00000 1.8167 0.00606 0.00606 0.03845 0.03845 
14 
15 

01101 
10111 

1.7567 
1.7567 

0.00590 
0.01002 

0.01592 0.044351 
0.05437 j 

0.05437 

16 11001 1.6767 0.00751 0.00751 0.06188 0.06188 
17 00110 1.6167 0.01438 0.01438 0.07626 0.07626 
18 
19 

01000 
10010 

1.5367 
1.5367 

0.01078 
0.01831 0.02909 

0.087041 
0.10535 j 

0.10535 

20 11111 1.4767 0.01782 0.01782 0.12316 0.12316 
21 00001 1.4167 0.01415 0.01415 0.13731 0.13731 
22 OHIO 13367 0.02556 0.02556 0.16287 0.16287 
23 11010 1.2567 0.03255 0.03255 0.19542 0.19542 
24 00111 1.2167 0.03355 0.03355 0.22897 0.22897 
25 
26 

01001 
10011 

1.1367 
1.1367 

0.02515 
0.04272 

[    0.07287 0.25412) 
0.29684 j 

0.29684 

27 00010 0.9967 0.06130 0.06130 0.35814 0.35814 
28 01111 0.9367 0.05964 0.05964 0.41778 0.41778 
29 11011 0.8567 0.07595 0.07595 0.49373 0.49373 
30 01010 0.7167 0.10897 0.10897 0.60270 0.60270 
31 00011 0.5967 0.14303 0.14303 0.74573 0.74573 
32 01011 0.3167 0.25427 0.25427 1.00000 1.00000 

Figure 5. Hypothetical 5-component example: Summary of Squared Distance Measure 
(SDM) test. 
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Order by Probability (OP) Procedure -- RR OP (14 outcomes) 

10100 
11100 
10101 
00100 
11101 
10000 
01100 
11000 
00101 
10001 
10110 
01101 
00000 
11001 

Kills Test -- RR K (2 outcomes) 

00000 
11111 

More-likely Response (MLR) Test ~ RR MLO (6 outcomes) 

10100 
00100 
10000 
10101 
10110 
11100 

Squared Distance Measure (SDM) Test - RR SDM (13 outcomes) 

10100 
11100 
10101 
00100 
10000 
11101 
01100 
10110 
11000 
00101 
10001 
11110 
00000 

Figure 6. Hypothetical 5-component example: Rejection regions for each procedure. 
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VIII. PROCEDURE COMPARISONS 

To study the four procedures, 2000 pairs of /-dimensional probability vectors were ran- 
domly generated for / = 5, 6, 7, 8, 9, and 10. The first vector of a pair (h0 hA) was considered 
the hypothesized probability vector and the second was considered the alternative probability 
vector. The level of significance was set at a = .05. The power of each test (i.e., the proba- 
bility of rejecting H0 when HA is true) was computed for each pair (h0, hA). 

Figure 7 shows a graphic way of comparing the power of two test procedures, call them 
A and B. For a given pair of vectors (h0,1TA), we compute the ordered pair (ßA, /?B) where 
ßA and /?B are the powers of A and B respectively. Then the scatterplot of all 2000 points, 
(ßA, ßB), will give us a comparison of the two tests. If Procedure A is more powerful than 
Procedure B, then we expect to see a graph similar to Figure 7(A). If the opposite is true, the 
plot will be similar to Figure 7(B). But if both procedures have approximately the same 
power, then Figure 7(C) is the proper scatterplot. 

Comparisons of the four procedures consistently show the OP procedure to be the most 
powerful (See Figures 8 and 9). The SDM test appears to be only slightly less powerful. The 
MLR and Kills tests both showed poor ability to reject H0 when other Ps were used. 

These findings are reinforced when the median power of each procedure is computed. 
In Figure 10, we see again that OP slightly outpowers SDM, with MLR and Kills exhibiting 
less power. It is impossible to tell for certain which of the four procedures is best unless we 
know "hA. But from the strictest viewpoint in which we assume no prior knowledge of the Pj's, 
this is not the case. When we do not know any information about hA, we must assume that all 
possible TTA's are equally likely. Therefore it makes sense to pick that procedure with the 
greatest number of outcomes in its rejection region. 

IX. THE FISHBOWL ARGUMENT 

Assume that the null hypothesis we are interested in testing is one that completely 
defines the distribution of the outcome space fi. For example, our illustrative example from 
Figures 1-6 is concerned with the null hypothesis 

H0: Pl = .23, p2 = .64, p3 = .19, p4 = .91, p5 = .70. 

Given the estimated probabilities in this hypothesis, P(Aj) can be calculated for all possible 
outcomes. Another null hypothesis that we may be interested in is: 

H0: pj = .23, p2 = .64, p3 = .19, p4 = p5 

Note that this does not contain all the probability estimates needed to compute P(A), how- 
ever it is certainly a valid hypothesis. We will define a simple null hypothesis to be one that 
completely defines the distribution of the outcome space, and denote it by HQ. 
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Figure 7. Possible power versus power plots. 
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Now make the additional assumption that an experiment has a finite outcome space, n. 
If we are interested in testing some simple null hypothesis at the a level of significance, how 
many different ways can we perform a test of H^ and which is the optimal way? 

To attempt to answer these questions let ft be of size N, m < N, and {Oj, 02, • • • Om} 
be any subset of ft such that under H^, 

P(01) + P(02)+ ••• +P(Om)<a. 

Then we claim that {Ov 02, • • • Om} is a rejection region for some test of HQ. Why? 
Because under HQ, the chance of observing an outcome from this subset is less than or equal 
to alpha, our desired level of significance. Therefore we have the foundations of a statistical 
test, even if the reasoning behind the selection of the subset is not specified. 

To help explain this concept, Figure 11 shows an example of an outcome set with N=16. 
Each circle represents one of the 16 possible outcomes and its size is proportional to the den- 
sity of the outcome under the simple null hypothesis. In Figure 12, each group of circles (out- 
comes) connected by a horizontal line symbolizes a subset satisfying our condition (i.e., 
a < .05) to be a rejection region for some test of the simple null hypothesis. The probability 
of observing an outcome from each subset is indicated by the number in the right column. 
Note that these values (which are computed by summing the probabilities of the outcomes in 
the subset) are all less than or equal to .05, the desired alpha level, and that the addition of 
any other outcome to each set makes the new sum greater than .05. We therefore consider 
each of these 24 subsets a rejection region to test HQ. 

For each rejection region, the probability of observing an outcome in that region is at 
most a under the simple null hypothesis. However, if some alternative hypothesis is true, the 
probability of observing an outcome in the rejection region (thereby correctly rejecting HQ) is 
some other value 1-ß, which we call the power of the test. Unfortunately the power is unk- 
nown to us if we do not know which alternative hypothesis is true. At best, we can only say 
that all alternative hypotheses are equally likely. Therefore each outcome in a rejection 
region is equally likely to occur, and the optimal rejection region is that one which contains 
the most outcomes. The way to build this rejection region is to include the least likely out- 
comes until no more can be added. In Figure 12, the star labels the rejection region that we 
would use since it contains six outcomes, more than any other rejection region. 

As an analogy, assume you are given a small fishbowl partially filled with water and a 
large number of pebbles with which to completely fill it. Also assume that each pebble has a 
different volume. If you were instructed to raise the water level to the top of the fishbowl by 
adding as many pebbles as possible, how would you set out to do so? Instead of occupying 
space with one large pebble, you would fill the same space with smaller pebbles. Therefore 
you would begin by selecting the smallest pebble and putting it in the bowl. Then you would 
drop in the second smallest pebble. The third pebble would be the next smallest, and so on 
untü the water level reaches the brim. The remaining pebbles would of course be the largest 
ones. 
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The OP procedure uses this "fishbowl" technique by filling up the rejection region with 
those outcomes having the smallest probabilities. The only restriction to the technique is that 
the last outcome entered into the rejection region cannot have the same density as any out- 
come excluded from the region 

X. FURTHER NOTES AND RECOMMENDATIONS 

The OP procedure was only tested for 1 = 5,6, 7, 8, 9 and 10, for two reasons. Firstly, 
the data that spawned this research was only for small /, namely / < 10. Secondly, the compu- 
tational time and storage needed to compute the P(A)'s, B's, etc. grows nearly exponentially 
with each unit increase in /. Simulations using / = 12 were attempted but ran non-stop for a 
couple of days on a Gould 9050 minicomputer. * 

Since the SDM tests does a good job of mimicking the OP procedure it may be an easier 
test to use when / is larger than 10, if the distribution of S(A) can be approximated. Initial 
attempts to find such an approximation were not successful. A listing of the computer pro- 
gram is given in the Appendix at the end of this report. 

XL CONCLUSIONS 

This problem is complicated by the fact that we must judge the entire set of computer 
generated estimates on a single shot. It must be admitted that while OP is the best procedure 
of those studied, occasionally H0 was not rejected although the alternative hypothesis differed 
greatly from it Great care must be taken in interpreting the final decisioa In rejecting H0 

we can confidently say that the set of hypothesized kill probabilities is incorrect. However, 
venturing to say which components are incorrect and by how much is dangerous. It is vital to 
remember that we are trying to make inferences from one round. If we do not reject H0, 
then this does not allow us to "accept H0 as being true". It simply says that there is not 
enough evidence to say that H0 is false. We cannot validate the estimates, we can only state 
that they are consistent with the live fire results. 

We must take care to see that our assumption of independent components is met. All 
the calculations involved in the OP procedure are made under these assumptions. Therefore 
the selection of components is critical, and we should avoid including incendiary components, 
shielded components, etc., in the analysis. 

The OP procedure works best of the four tried because it does not lose any information 
by collapsing the data into a univariate test statistic. It simply creates that rejection region 
with the most outcomes. 

* Lawrence D. Losie of the Ballistic Research Laboratory has made recommendations for improving the computational efficiency of the 
OP procedure. This work is unpublished but may be obtained through private communication with Mr. Losie. 
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TABLE OF SYMBOLS 

A 

A?V 
ai 

B[K(A(i))] 

B[M(A0)] 
B[S(AJ 

Bi 
PA 
C 
c, 

E 

hA 

\ K 
K(A) 
/ 
M(A) 
MLR 
MOP 
ML 

Mu 

Oi 
OP 
P(A) 
P[K(A  )] 
P[M(A  )] 
P[S(A(ij] 

Pk 

Pi 
RR * 
S 
SDM 
S(A) 
n 

vector of observed outcomes 
•th 

.th 

i   ordered vector of observed outcomes 
armored fighting vehicle 
il component of vector A 
level of significance 
probability of observing that number of kills (or less) associated with the i1' 
ordered vector A,^ 
probability of observing that MLR value (or less) associated with the i' ordered vector Am 

probability of obsrving that SDM value (or less) associated with the i' ordered vector A(j) 

cumulative function value of vector A,f) 
power of some test procedure A 
critical value for one-sided rejection region 
lower critical value for two-sided rejection region 
upper critical value for two-sided rejection region 
more likely response value for i   component of vector A 
expected value operator 
alternative hypothesis 
vectors of alternative probabilities 
null hypothesis 
vector of hypothesized probabilities 
null hypothesis which completely defines the distribution of the outcome space 
number of kills in vector A 
number of components 
number of "more-likely-responses" in vector A 
more-likely-response 
measure-of-performance 
expected number of non-kills for the group of components whose estimated 
probability of kill is less than one-half 
expected number of kills for the group of components whose estimated 
probability of kill is greater than one-half 
an element of the outcome space fi 
order-by-probability 
probability of vector A 
probability of observing that number of kills associated with the il ordered vector A(i) 

probability of observing that MLR value associated with the il ordered vector A(i) 

probability of observing that SDM value associated with the i  ordered vector A,^ 
probability of kill 
true probability of kill for il component 
estimated probability of kill for i   component 
rejection region 
number of estimated probabilities equal to one-half 
squared-distance-measure 
squared-distance-measure for vector A 
set of all possible outcomes 
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APPENDIX 

c FILE; vul.f 
c 
c This program takes a vector of k probabilities of 0,1 outcomes, 
c enumerates all possible outcome vectors and calculates the 
c probability of each, using the vector of outcome probabilities 
c given.  It then sorts each of the outcome vectors according to 
c their probability of occurence.  It calculates and prints the 
c cumulative probability. 
c 
c k < 13, is the dimension of the vector. 
c p(i), i=l,k is the vector of input probabilities. 
c jout(i,j) is the 2**k by k matrix of possible outcome vectors. 
c 
c This program is written to run in the interactive mode but 
c it can be run batch mode by reading k, the desired alpha level 
c and p(i), i=l,k from one file and writing the results in 
c another file.  For example, vul.e < data.inp > data.out will 
c read input from a file named data.inp and write the results 
c into a file called data.out. 
c 

common jout(4097,10),prob(4097),n,k 
double precision prob(4097),cum(4097) 
dimension p(12) 
read(5,*) k 
read(5,*) dalp 
read(5,*)(p(i) ,i = l ,k) 
epsilon=0.00000001 
n=2**k 

c GENERATE MATRIX OF ALL POSSIBLE OUTCOMES 
do 10 j=l,n 
do 10 i=l,k 
jout(j,i)=0 

10 continue 
do 20 i=l,k 
ni=2**(k-i) 
nj =2*ni 
do 20 nk=ni+l,n,nj 
do 20 nl=nk,nk+ni-l 

j out(nl,i) = 1 
20 continue 

«rite(6,120) 
write(6,130)(p(i),i=l,k) 
write(6,140) 
write(6,150) 
do 30 i = l,n 
prob(i) = 1. 
do 30 j = l,k 
prob(i) = prob(i)*p(j)**(jout(i,j))*(1.-p(j))**(1-jout(i,j)) 

30  continue 
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ORDER ALL OUTCOMES BY PROBABILITY, FROM LOWEST TO HIGHEST 
do 50 j=l,n-l 
do 50 m=j + 1,n 
if (prob(j ).gt.prob Cm)) then 
do 40 i=l,k 
isave = j out(j ,i) 
j out(j ,i)=jout(m,i) 
jout(m,i)=isave 

40     continue 
save=prob( j ) 
prob(j)=prob(m) 
prob(m)= save 
endif 

50  continue 
CALCULATE CUMULATIVE DISTRIBUTION FUNCTION 

cum(1)=prob(1) 
do 60 j=2,n 
cum( j)=cum(j-1)+prob(j) 

60  continue 
do 70 i=l,n 
write(6,160)i,prob(i),cum(i),(jout(i,j),j=l,k) 

70  continue 
• DETERMINE REJECTION REGION 

irr=n 
80  irr=irr-l 

if (cum(irr).ge.dalp) goto 80 
if (prob(irr+1)-prob(irr).It.epsilon) goto 80 
talp=cum(irr) 

: OUTPUT REJECTION REGION VECTORS 
write(6,170)irr 
do 110 i=1,irr 
write(6,180)(jout(i,j), j = l ,k^ 

110  continue 
write(6,190)talp 

120  format('The input probabilities are:') 
130  format(12f6.3) 
140  format(//' Vector    Prob.    Cum.Prob.    Vector') 
150  formate   No.  '/) 
160  format(i6,2x,el0.5,f10.6,2x,lli2) 
170  format(/'The rejection region consists of these ',i3,' vectors:'/) 
180  format(4x,lli2) 
190  format(/'The true alpha level is ',f6.3) 

stop 
end 
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